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Abstract—This paper considers a two-criteria three-index axial assignment problem, represent-
ing a classical NP-hard problem even in the single-criterion case. Within this formulation, the
problem of combining feasible solutions is posed; it is an assignment problem on the set of
solutions containing only the components of the feasible solutions selected. A polynomial algo-
rithm is proposed to find Pareto optimal solutions in the combination problem of two feasible
solutions. Based on this algorithm, a heuristic approach is constructed to estimate the Pareto
set of the multicriteria axial assignment problem.
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1. INTRODUCTION

There is a wide class of applied problems formalized by multi-index axial assignment problems.
Examples include resource allocation, scheduling, object tracking, robotic logistics [1–5], and others.
The class of multi-index axial assignment problems is NP-hard even in the three-index case [6].
Particular polynomially solvable subclasses [1, 7] and subclasses with polynomial approximation
algorithms [1, 8, 9] are known. The three-index axial assignment problem was studied in [10–16],
including the construction of approximate approaches and the implementation of exact algorithms.
Multi-criteria formulations of multi-index assignment problems were discussed in [17–20].

This paper addresses the issue of constructing the Pareto set in a two-criteria three-index axial
assignment problem. We formulate the problem of combining feasible solutions, which is a multi-
criteria assignment problem on the set of solutions obtained by combining the components of
given feasible solutions. We propose a polynomial algorithm for constructing a subset of Pareto
optimal solutions on the set of combinations of two feasible solutions. This algorithm is applied
to develop a heuristic algorithm for approximating the Pareto set of the two-criteria three-index
assignment problem. A computational experiment is carried out to illustrate the approach. The
paper continues the series of research works [21–24] devoted to combining the solutions of the axial
assignment problem.

The remainder of this paper is organized as follows. In Section 2, we formulate the two-criteria
three-index axial assignment problem and the corresponding combination problem of feasible so-
lutions. Section 3 describes an algorithm for finding a subset of Pareto optimal solutions of the
combination problem. The results of computational experiments are provided in Section 4.
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2. PROBLEM STATEMENT

Let I, J, and K be disjoint index sets, I ∩ J = ∅, I ∩K = ∅, J ∩K = ∅ and |I| = |J | = |K| = n;
cijk and dijk, where i ∈ I, j ∈ J , and k ∈ K, are three-index cost matrices; finally, xijk, where i ∈ I,
j ∈ J , and k ∈ K, is the three-index matrix of the variables. Then the two-criteria three-index axial
assignment problem is formulated as the following integer linear programming problem:∑

i∈I

∑
j∈J

xijk = 1, k ∈ K, (1)

∑
i∈I

∑
k∈K

xijk = 1, j ∈ J, (2)

∑
j∈J

∑
k∈K

xijk = 1, i ∈ I, (3)

xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K, (4)∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk → min, (5)

∑
i∈I

∑
j∈J

∑
k∈K

dijkxijk → min . (6)

For the sake of convenience, we denote by Z2 the two-criteria problem (1)–(6) and introduce

C(x) =
∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk,

D(x) =
∑
i∈I

∑
j∈J

∑
k∈K

dijkxijk.

Then x∗ is called a Pareto optimal solution of the problem Z2 if x
∗ satisfies the constraints (1)–(4)

and there is no x′ satisfying (1)–(4) such that C(x∗) > C(x′) and D(x∗) � D(x′) or C(x∗) � C(x′)
and D(x∗) > D(x′).

As is well known, the (single-criterion) axial assignment problem (1)–(5) is NP-hard [6]. Hence,
the problem of constructing a Pareto optimal solution of the two-criteria axial assignment prob-
lem Z2 is also NP-hard. To prove this fact, we need to define cijk = dijk, i ∈ I, j ∈ J , k ∈ K, in
the corresponding problem Z2.

Proposition 1. The problem of constructing a Pareto optimal solution of the problem Z2 is NP-
hard.

Thus, it is topical to develop effective heuristic approaches to estimating the Pareto set of the
problem Z2. The heuristic approach proposed below is based on combining feasible solutions of the
problem Z2. Here, combining means solving the problem on the set of solutions containing only
the components of given feasible solutions.

Now we state the combination problem. Let a given set W ⊂ I × J ×K define a subset of
allowed assignments. We introduce the auxiliary constraint

xijk = 0, (i, j, k) /∈ W. (7)

The two-criteria problem (1)–(4), (7), (5), (6) for a given set W will be denoted by Z2(W ).
Obviously, problem (1)–(6) corresponds to the problem Z2(I × J ×K).
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434 AFRAIMOVICH, EMELIN

Then x∗ is called a Pareto optimal solution of the problem Z2(W ) if x∗ satisfies the con-
straints (1)–(4), (7) and there is no x′ satisfying (1)–(4), (7) such that C(x∗) > C(x′) and
D(x∗) � D(x′) or C(x∗) � C(x′) and D(x∗) > D(x′).

Checking the consistency of all constraints in the problem Z2(W ) with an arbitrary set W, i.e.,
the system (1)–(4), (7), is an NP-complete problem [1]. When solving the combination problem,
we will consider the sets W corresponding to the assignments of a given subset of feasible solutions.

Let xijk, where i ∈ I, j ∈ J, and k ∈ K, be a feasible solution of the system of constraints (1)–(4).
Then W (x) will denote the following set of allowed assignments:

W (x) = {(i, j, k)|xijk = 1, i ∈ I, j ∈ J, k ∈ K}.

Consider x1ijk, x
2
ijk, . . . , x

r
ijk, where i ∈ I, j ∈ J, and k ∈ K, representing arbitrary r feasible

solutions of the system of constraints (1)–(4). Then

W (x1, x2, . . . , xr) = W (x1) ∪W (x2) ∪ . . . ∪W (xr).

Below, we will investigate the problem Z2(W (x1, x2, . . . , xr)).

3. CONSTRUCTING A SUBSET OF PARETO OPTIMAL SOLUTIONS

For r = 2, let x1 and x2 be given feasible solutions of the system of constraints (1)–(4). Consider
the problem Z2(W (x1, x2)) and the issue of constructing its Pareto optimal solutions.

Algorithm 1. Constructing a subset of Pareto optimal solutions of the problem Z2(W (x1, x2)).

Step 1. Construct a graph G = (V,A), where

V = {I ∪ J ∪K}, A =
{
(i, j), (i, k), (j, k)|(i, j, k) ∈ W (x1, x2)

}
.

Step 2. Find the connected components Vl, l = 1, q, of the graph G and construct the subgraphs
Gl = (Vl, Al), l = 1, q, generated by the corresponding connected components.

Step 3. Construct the sets

D1
l =

{
(i, j, k)|(i, j, k) ∈ W (x1), (i, j), (i, k), (j, k) ∈ Al

}
, l = 1, q,

D2
l =

{
(i, j, k)|(i, j, k) ∈ W (x2), (i, j), (i, k), (j, k) ∈ Al

}
, l = 1, q.

Step 4. Let

Pl =

⎧⎪⎨
⎪⎩p

∣∣∣∣∣ ∑
(i,j,k)∈Dp

l

cijk = min
p′∈{1,2}

∑
(i,j,k)∈Dp′

l

cijk, p ∈ {1, 2}
⎫⎪⎬
⎪⎭ ,

pl = argmin
p∈Pl

∑
(i,j,k)∈Dp

l

dijk, l = 1, q.

Step 5. Construct the Pareto optimal solution x∗0 using the following algorithm. Let x∗0ijk := 0,

where i ∈ I, j ∈ J , and k ∈ K. For each l = 1, q, execute x∗0ijk := 1, (i, j, k) ∈ Dpl
l .
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Step 6. Construct the following index set of the connected components:

L =

⎧⎪⎨
⎪⎩l

∣∣∣∣∣ ∑
(i,j,k)∈Dpl

l

cijk >
∑

(i,j,k)∈Dpl
l

cijk and
∑

(i,j,k)∈Dpl
l

dijk <
∑

(i,j,k)∈Dpl
l

dijk, l ∈ {1, . . . , q}
⎫⎪⎬
⎪⎭ ,

where p = 3− p for p ∈ {1, 2}.
Step 7. Sort this set in ascending order of the value

tg(l) =

∑
(i,j,k)∈Dpl

l

dijk −
∑

(i,j,k)∈Dpl
l

dijk

∑
(i,j,k)∈Dpl

l

cijk −
∑

(i,j,k)∈Dpl
l

cijk
,

i.e., let L = {l1, . . . , l|L|} and tg(ls) � tg(ls+1), s = 1, |L| − 1.

Step 8. Construct |L| Pareto optimal solutions x∗s, s = 1, |L|, in the following way.
Let x∗sijk := 0, i ∈ I, j ∈ J, k ∈ K and, for each t = 1, |q|, execute:

if t ∈ {l1, . . . , ls}, then x∗sijk := 1, (i, j, k) ∈ Dpt
t ;

otherwise, x∗sijk := 1, (i, j, k) ∈ Dpt
t .

Here is a numerical example for the operation of Algorithm 1.

Example 1. An illustration of Algorithm 1.

Let n = 6 and let the matrices cijk and dijk be

cijk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (i, j, k) ∈ {(1, 1, 1), (1, 1, 2), (2, 2, 1), (3, 3, 3), (4, 4, 4), (3, 3, 4),
(5, 5, 5), (5, 5, 6), (6, 6, 5)},

1, (i, j, k) ∈ {(4, 4, 3)},
2, (i, j, k) ∈ {(6, 6, 6)},
3, (i, j, k) ∈ {(2, 2, 2)},
10 otherwise.

dijk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, (i, j, k) ∈ {(1, 1, 1), (1, 1, 2), (2, 2, 2), (3, 3, 3), (4, 4, 3), (3, 3, 4),
(5, 5, 5), (5, 5, 6), (6, 6, 6)},

1, (i, j, k) ∈ {(2, 2, 1), (4, 4, 4)},
4, (i, j, k) ∈ {(6, 6, 5)},
10 otherwise,

Consider two feasible solutions x1 and x2 of the form

x1ijk =

{
1, (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6)},
0 otherwise,

x2ijk =

{
1, (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 4), (4, 4, 3), (5, 5, 6), (6, 6, 5)},
0 otherwise.

We describe the operation of Algorithm 1 on this example.
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Fig. 1. The graph G at Step 1.

Figure 1 shows the graph G yielded by Step 1.

At Step 2 the connected components of the graph G are constructed. Obviously, the graph G
has three connected components of the same structure. The sets obtained at Step 3 have the form

D1
1 = {(1, 1, 1), (2, 2, 2)}, D1

2 = {(3, 3, 3), (4, 4, 4)}, D1
3 = {(5, 5, 5), (6, 6, 6)},

D2
1 = {(1, 1, 2), (2, 2, 1)}, D2

2 = {(3, 3, 4), (4, 4, 3)}, D2
3 = {(5, 5, 6), (6, 6, 5)}.

At Step 4 we obtain

P1 = {2}, p1 = 2,

P2 = {1}, p2 = 1,

P3 = {2}, p3 = 2.

At Step 5 the first Pareto optimal solution x∗0 is constructed as follows:

x∗0ijk =

{
1, (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 3), (4, 4, 4), (5, 5, 6), (6, 6, 5)},
0 otherwise.

The criteria values achieved at this solution are C(x∗0) = 0 and D(x∗0) = 6.

At Step 6 the set L contains all three connected components; at Step 7 it will be sorted to l1 = 3,
l2 = 2, and l3 = 1. The next three Pareto optimal solutions constructed at Step 8 are

x∗1ijk =

{
1, (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6)},
0 otherwise,

x∗2ijk =

{
1, (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 4), (4, 4, 3), (5, 5, 5), (6, 6, 6)},
0 otherwise,

x∗3ijk =

{
1, (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 4), (4, 4, 3), (5, 5, 5), (6, 6, 6)},
0 otherwise.

The corresponding criteria values are

C(x∗1) = 2, D(x∗1) = 2,

C(x∗2) = 3, D(x∗2) = 1,

C(x∗3) = 6, D(x∗3) = 0.
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Fig. 2. The solutions found on the CD plane.

The resulting solutions are displayed on the CD plane, according to the value of their criterion
(Fig. 2). Here, x1 and x2 are the initial solutions; x∗0, x∗1, x∗2, and x∗3 are the Pareto optimal
solutions of the combination problem obtained using Algorithm 1; finally, x′1 and x′2 are feasible
solutions of the combination problem. In this example, there is one more Pareto optimal solution
x1 in addition to those found by the algorithm.

Next, we prove the correctness of Algorithm 1.

Consider the multicriteria problem. Let X ⊆ Rn be the set of feasible solutions of the problem

and
−−−→
f(x)∈Rm be the objective function of the problem, fi(x)→ min, i = 1,m.

Proposition 2. Let a set X ⊆ Rn be finite. If x ∈ X is not a Pareto optimal solution, then there
exists a Pareto optimal solution y ∈ X dominating x, i.e., fi(y) � fi(x), i = 1,m, and there exists
an index j ∈ {1, . . . ,m} such that fj(y) < fj(x).

Proof. Under the hypotheses of this proposition, suppose that x ∈ X is not a Pareto optimal
solution. In this case, we construct an algorithm for obtaining such a solution y.

Step 1. Find a solution x′ dominating the solution x. If no such solution existed, the solution x
would be Pareto optimal (a contradiction).

Step 2. Let x := x′ if x is Pareto-optimal, and return x; otherwise, go to Step 1.

By the definition of Pareto optimality, the total number of Steps 2 of the algorithm will not
exceed the cardinality of the solution set. Since the set is finite, the algorithm will output a Pareto
optimal solution in a finite number of steps. The proof is complete.

Proposition 3. Any feasible solution x satisfying the system of constraints of the problem
Z2(W (x1, x2)) can be constructed by choosing triples only from the first or only from the second
solution for each connected component independently.

Proof. This result was established when proving Theorem 1 in [21].

Therefore, we have

pl(x) =

{
1 if xijk = 1 for all (i, j, k) ∈ D1

l

2 if xijk = 1 for all (i, j, k) ∈ D2
l .

Proposition 4. For any Pareto optimal solution x′ of the problem Z2(W (x1, x2)),∑
(i,j,k)∈Dpl(x

′)
l

cijk =
∑

(i,j,k)∈Dpl(x
∗0)

l

cijk and
∑

(i,j,k)∈Dpl(x
′)

l

dijk =
∑

(i,j,k)∈Dpl(x
∗0)

l

dijk, l /∈L.
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Proof. Assume on the contrary the existence of a Pareto optimal solution x′ with an index l /∈ L
such that ∑

(i,j,k)∈Dpl(x
′)

l

cijk �=
∑

(i,j,k)∈Dpl(x
∗0)

l

cijk or
∑

(i,j,k)∈Dpl(x
′)

l

dijk �=
∑

(i,j,k)∈Dpl(x
∗0)

l

dijk.

Consider two cases.

1.
∑

(i,j,k)∈Dpl(x
′)

l

cijk �= ∑
(i,j,k)∈Dpl(x

∗0)
l

cijk.

According to Step 5 of Algorithm 1,∑
(i,j,k)∈Dpl(x

′)
l

cijk >
∑

(i,j,k)∈Dpl(x
∗0)

l

cijk.

Then:

a) If
∑

(i,j,k)∈Dpl(x
′)

l

dijk <
∑

(i,j,k)∈Dpl(x
∗0)

l

dijk, we have l∈L (a contradiction).

b) Otherwise,
∑

(i,j,k)∈Dpl(x
′)

l

dijk � ∑
(i,j,k)∈Dpl(x

∗0)
l

dijk, and the triples corresponding to connected

component l in the solution x′ can be replaced as follows:

x′ijk := 0, (i, j, k) ∈ D
pl(x

′)
l ,

x′ijk := 1, (i, j, k) ∈ D
pl(x

∗0)
l .

The values of both criteria will be reduced accordingly; therefore, x′ is not a Pareto optimal solution
(a contradiction).

2.
∑

(i,j,k)∈Dpl(x
′)

l

cijk =
∑

(i,j,k)∈Dpl(x
∗0)

l

cijk,
∑

(i,j,k)∈Dpl(x
′)

l

dijk �= ∑
(i,j,k)∈Dpl(x

∗0)
l

dijk.

According to Step 5 of Algorithm 1,∑
(i,j,k)∈Dpl(x

′)
l

dijk >
∑

(i,j,k)∈Dpl(x
∗0)

l

dijk,

and the triples corresponding to connected component l in the solution x′ can be replaced as follows:

x′ijk := 0, (i, j, k) ∈ D
pl(x

′)
l ,

x′ijk := 1, (i, j, k) ∈ D
pl(x

∗0)
l .

Again, the values of both criteria will be reduced, and hence x′ is not a Pareto optimal solution (a
contradiction). The proof of this proposition is complete.

We denote by Pt, t = 1, |L|, the straight line connecting the points x∗t and x∗t+1 on the CD
plane. The equation of Pt has the form

D −D(x∗t)
D(x∗t−1)−D(x∗t)

=
C − C(x∗t)

C(x∗t−1)− C(x∗t)
.

For the sake of convenience, it can be reduced to

D = D(x∗t) +
D(x∗t)−D(x∗t−1)

C(x∗t−1)−C(x∗t)
(C(x∗t)− C) = D(x∗t) + tg(lt)(C(x∗t)− C).
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Also, this equation is equivalently written as

D = D(x∗t−1) + tg(lt)(C(x∗t−1)−C).

We say that a feasible solution x of the problem Z2(W (x1, x2)) is not below the straight line Pt

if

D(x) � D(x∗t) + tg(lt)(C(x∗t)− C(x)).

Obviously, if a solution x is not below the straight line Pt, it will not dominate any of the
solutions x∗t−1, x∗t.

Proposition 5. If for some e ∈ {1, . . . , |L|} a solution x is not below the straight line Pe and
C(x) � C(x∗e), then it is not below any straight line Pt, t = e, |L|.

Proof. Since x is not below the straight line Pe, we have

D(x) � D(x∗e) + tg(le)(C(x∗e)− C(x)).

By construction, tg(lt) � tg(lt+1) � 0, t = 1, |L| − 1. Due to the hypothesis of this proposition,
(C(x∗e)− C(x)) � 0. Therefore,

tg(le)(C(x∗e)− C(x)) � tg(le+1)(C(x∗e)− C(x))

and consequently,

D(x) � D(x∗e) + tg(le+1)(C(x∗e)− C(x)).

In other words, the solution x is not below the straight line Pe+1. By induction, we establish that
x is not below the straight line Pt, t � e. The proof is complete.

Theorem 1. There exists no Pareto optimal solution x′ of the problem Z2(W (x1, x2)) that dom-
inates any of the solutions constructed by Algorithm 1.

Proof. Assume on the contrary the existence of a Pareto optimal solution x′ dominating at
least one of the solutions x∗0, . . . , x∗|L| constructed by the algorithm. Due to Proposition 4, such a
solution can differ from x∗0 only in the triples of components l ∈ L.

We construct |L|+ 1 solutions x′′s, s = 0, |L|, as follows.
Step 1. Let x′′sijk := 0, i ∈ I, j ∈ J, k ∈ K.

Step 2. For each t = 1, q, execute:

— If t ∈ {l1, . . . , ls} and pt(x
′) �= pt(x

∗0), then x′′sijk := 1, (i, j, k) ∈ Dpt
t .

— Otherwise, x′′sijk := 1, (i, j, k) ∈ Dpt
t .

By construction, x′′0 = x∗0, and hence the solution x′′0 is not below the straight line P1.

Now we demonstrate that if the solution x′′s is not below the straight lines Pt, t = 1, |L|, then
the solution x′′s+1 is not below the straight lines Pt, t = 1, |L|, as well.

For each straight line Pt, t = 1, r + 1, two cases are possible:

1. pls+1(x
′) = pls+1(x

∗0), then the solution x′′s+1 coincides with the solution x′′s; therefore, it is
not below the straight line Pt.

2. pls+1(x
′) �= pls+1(x

∗0), then the condition that x′′s is not below Pt implies

D(x′′s) � D(x∗t) + tg(lt)(C(x∗t)− C(x′′s)). (8)
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By construction,

D(x′′s+1) = D(x′′s) + tg(ls+1)(C(x′′s)− C(x′′s+1)).

Applying inequality (8) yields

D(x′′s+1) � D(x∗t) + tg(lt)(C(x∗t)− C(x′′s)) + tg(ls+1)(C(x′′s)− C(x′′s+1))

and consequently,

D(x′′s+1) � D(x∗t) + tg(lt)(C(x∗t)− C(x′′s+1)) + (tg(lt)− tg(ls+1))(C(x′′s+1)− C(x′′s)).

By construction C(x′′s+1)− C(x′′s) � 0 and tg(lt)− tg(ls+1) � 0 for s+ 1 � t. Then

D(x′′s+1) � D(x∗t) + tg(lt)(C(x∗t)− C(x′′s+1)),

i.e., the solution x′′s+1 is not below the straight line Pt.

Hence, if the solution x′′s is not below the straight lines Pt, t = 1, |L|, then the solution x′′s+1

is not below the straight lines Pt, t = 1, s+ 1.

By construction, C(x′′s+1) � C(x∗s+1). Then, according to Proposition 5, the solution x′′s+1 is
not below the straight lines Pt, t = s+ 1, |L| (here e = s+ 1). Therefore, if the solution x′′s is not
below the straight lines Pt, t = 1, |L|, then the solution x′′s+1 is not below the straight lines Pt,
t = 1, |L|. By induction, we establish that x′′|L| is not below the straight lines Pt, t = 1, |L|.

By construction, x′′|L| = x′, i.e., x′ is not below the straight lines Pt, t = 1, |L|; hence, the solu-
tion x′ dominates neither of the solutions x∗0, . . . , x∗|L| found by Algorithm 1. This contradiction
completes the proof of Theorem 1.

Theorem 2. The solutions x∗0, . . . , x∗|L| obtained using Algorithm 1 are Pareto optimal in the
problem Z2(W (x1, x2)).

Proof. Assume on the contrary the existence of a solution x∗q′ , q′ ∈ {0, . . . , L}, that is not Pareto
optimal in the problem Z2(W (x1, x2)). Then, according to Proposition 2, there is a Pareto optimal
solution x′ of the problem Z2(W (x1, x2)) dominating x∗q′ :

C(x′) < C(x∗q
′
) and D(x′) < D(x∗q

′
).

However, due to Theorem 1, such a solution x′ does not exist. This contradiction completes the
proof of Theorem 2.

Proposition 6. Algorithm 1 does not necessarily yield the entire set of Pareto optimal solutions
of the problem Z2(W (x1, x2)).

Proof. We provide a corresponding numerical example. Let n = 4 and

x1ijk =

{
1 if (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}
0 otherwise,

x2ijk =

{
1 if (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 4), (4, 4, 3)}
0 otherwise.

In addition, let

cijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (2, 2, 1), (4, 4, 3)}
1 if (i, j, k) = (1, 1, 2)

2 if (i, j, k) = (3, 3, 4)

5 otherwise,
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dijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if (i, j, k) ∈ {(2, 2, 2), (4, 4, 4), (1, 1, 2), (2, 2, 1), (3, 3, 4), (4, 4, 3)}
1 if (i, j, k) = (1, 1, 1)

2 if (i, j, k) = (3, 3, 3)

5 otherwise.

Then there exist four feasible solutions of the combination problem:

x∗1ijk =

{
1 if (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}
0 otherwise,

where C(x∗1) = 0 and D(x∗1) = 3;

x∗2ijk =

{
1 if (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 4), (4, 4, 3)}
0 otherwise,

where C(x∗2) = 3 and D(x∗2) = 0;

x∗3ijk =

{
1 if (i, j, k) ∈ {(1, 1, 2), (2, 2, 1), (3, 3, 3), (4, 4, 4)}
0 otherwise,

where C(x∗3) = 1 and D(x∗3) = 2; and finally,

x∗4ijk =

{
1 if (i, j, k) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 4), (4, 4, 3)}
0 otherwise,

where C(x∗4) = 2 and D(x∗4) = 1.

Each of the four solutions constructed is Pareto optimal in the problem Z2(W (x1, x2)). Note that
q = 2 and |L| = 2; hence, Algorithm 1 will find only three solutions. The proof of this proposition
is complete.

Thus, Algorithm 1 constructs Pareto optimal solutions of the problem Z2(W (x1, x2)) without
any guarantee of obtaining the entire Pareto set.

Theorem 3. Algorithm 1 requires O(n2) computational operations.

Proof. Let the input data of Algorithm 1 be feasible solutions x1 and x2 represented as a
collection of triples (i, j, k) and costs cijk for which the corresponding variables are 1. According
to (1)–(4), the number of such triples is n for each feasible solution. Step 1 of the algorithm is
to construct a graph G = (V,A), where |V | = O(n) and |A| = O(n). At Step 2 the graph G is
partitioned into connected components. This partition is obtained using the width-first traversal
of the graph, which requires O(|V |+ |A|) = O(n) computational operations. Step 3 serves to
determine the corresponding connected components for the input triples of the algorithm; this step
requires O(n) computational operations. At Step 4, for each connected component, the algorithm
determines from which solution the triples will be taken to the first Pareto optimal solution; this step
requires O(n) computational operations. Step 5 is to construct the first Pareto optimal solution;
since the solution can be represented as a collection of n triples (i, j, k), this step requires O(n)
computational operations. At Step 6 only the connected components matching the criterion are
selected from all such components, which requires O(n) computational operations. Step 7 serves to
sort the subset of the connected components, which requires O(n log(n)) computational operations.
Finally, at Step 8, O(n) solutions are constructed, each in O(n) computational operations. Thus,
Algorithm 1 requires O(n2) computational operations. The proof of the theorem is complete.
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4. COMPUTATIONAL EXPERIMENTS

Algorithm 1 yields a subset of the Pareto set in the problem Z2(W (x1, x2)). Let us apply this
algorithm to develop heuristic approximation methods for the Pareto set of the original problem Z2.
The effectiveness of the heuristic algorithm will be assessed via computational experiments.

Experiment 1. Construct the matrices cijk and dijk in the following way: for each index
i ∈ I ∪ J ∪K, generate a random point p on the XY plane so that px and py are integer and uni-
formly distributed on the closed interval [0,232 − 1]. Then cijk = dist(i, j) + dist(j, k) + dist(i, k),
where dist(a, b) indicates the Manhattan distance between points a and b. Determine dijk by
analogy.

A local optimization procedure for a feasible solution x of the problem Z2 includes several steps
as follows.

Step 1. Choose a random number a ∈ [0, 1] equiprobably.

Step 2. Construct the three-index cost matrix eijk = acijk + (1− a)dijk.

Step 3. Apply the local optimization procedure proposed in [15] to the solution x of the original
problem, but with the criterion

∑
i∈I

∑
j∈J

∑
k∈K eijkxijk → min.

We construct n random feasible solutions x1, . . . , xn of the problem Z2, and apply the local
optimization procedure to each of them until the solution stops changing. Let x′1, . . . , x′n denote
the resulting solutions. From these solutions, we select the nondominated ones. Let R be the
Pareto curve approximation constructed from the latter solutions.

Next, we apply Algorithm 1 to the pairs of locally optimized solutions to solve the following
problems:

Z2(W (x′1, x
′
2)), . . . , Z2(W (x′n−1, x

′
n)).

From all the solutions obtained, we choose the nondominated ones. Let Q be the Pareto curve
approximation constructed from the latter solutions.

We compare the number of points not dominated by the corresponding approximation and
differing by the criterion value from all points of this approximation. We introduce the number of
points not dominated by the approximation A as follows: B(A) =

∣∣{x|x is a feasible solution of the
problem Z2, �x

′ ∈A such that C(x′) � C(x) and D(x′) � D(x)}∣∣. For each test, B(R) and B(Q)
were computed by checking the entire set of feasible solutions for the nonexistence of a dominant or
equal-criteria-value solution in the corresponding approximation (via complete enumeration). The
tests were carried out on dimensions n = 6, 7, 8, with 50 tests for each dimension.

The results of the first computational experiment are given in Table 1. Clearly, the application
of Algorithm 1 reduced the number of nondominated points by 6.57% on average.

Table 1

Problem dimension B(R)−B(Q)
B(R) 100%

6 2.14%

7 8.03%

8 9.54%

Experiment 2. Construct the matrices cijk and dijk in the following way: for each index
i ∈ I ∪ J ∪K, generate a random point p on the XY plane so that px and py are integer and uni-
formly distributed on the closed interval [0,232 − 1]. Then cijk = dist(i, j) + dist(j, k) + dist(i, k),
dijk = −max(dist(i, j), dist(j, k), dist(i, k)), where dist(a, b) indicates the Manhattan distance be-
tween points a and b. Determine dijk by analogy.
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We construct n3 random feasible solutions x1, . . . , xn3 of the problem Z2, and apply one itera-
tion of the local optimization procedure to each of them. Let x′1, x′2, . . . , x′n3 denote the resulting
solutions. From these solutions, we select the nondominated ones. Let R be the Pareto curve
approximation constructed from the latter solutions.

Next, we apply Algorithm 1 to the pairs of locally optimized solutions to solve the following
problems:

Z2(W (x′1, x
′
2)), . . . , Z2(W (x′n3−1, x

′
n3)).

From all the solutions obtained, we choose the nondominated ones. Let Q be the Pareto curve
approximation constructed from the latter solutions.

We compare the number of points not dominated by the corresponding approximation and
differing by the criterion value from all points of this approximation.

The tests were carried out on dimensions n = 6, 7, 8, with 50 tests for each dimension.

Table 2

Problem dimension B(R)−B(Q)
B(R) 100%

6 11.44%

7 18.08%

8 11.71%

The results of the second computational experiment are given in Table 2. Clearly, the application
of Algorithm 1 reduced the number of nondominated points by 13.74% on average.

5. CONCLUSIONS

This paper has proposed an algorithm for constructing Pareto optimal solutions in the problem
of combining two feasible solutions of the two-criteria three-index assignment problem. The correct-
ness of the algorithm has been proved, and a quadratic estimate of its complexity has been obtained.
This algorithm can be an additional step in heuristic approaches for estimating the Pareto domain
of the two-criteria three-index assignment problem. According to the results of computational ex-
periments provided, post-processing by the proposed optimal combination algorithm improves the
quality of approximate solutions.
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